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Abstract

Myosteatosis is associated with poor outcomes in various 
liver diseases. However, standardized methods for assess-
ing, defining, and diagnosing myosteatosis in the context of 
liver diseases remain unclear. Furthermore, the underlying 
mechanisms by which myosteatosis leads to pathophysi-
ological progression and adverse health outcomes remain 
elusive. Therefore, in this review, we elaborate on the cur-
rently available measures, definitions, and diagnostic crite-
ria of myosteatosis in the existing literature. We thoroughly 
clarify the recent evidence and data regarding the possible 
involvement of myosteatosis in the progression and dete-
rioration of various liver diseases and resulting complica-
tions, including liver cirrhosis, chronic viral hepatitis, non-
alcoholic/metabolic-associated fatty liver disease, primary 
sclerosing cholangitis, liver transplantation, and hepatocel-
lular carcinoma. Additionally, it synthesizes insights from 
basic research on the pathogenesis of myosteatosis, which 
involves multifactorial mechanisms, including insulin resist-
ance, mitochondrial dysfunction, and chronic inflammation. 
Finally, from an operational and pragmatic perspective, 
several regimens, including physical, nutritional, and phar-
macological therapies, have been discussed as potential 
treatments for myosteatosis.
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Introduction
Body composition has been widely investigated in the medi-
cal field, defined as the proportion and distribution of fat and 
lean tissues in the human body.1 Abnormalities in body com-
position are highly prevalent among patients with chronic liver 
disease and have been closely associated with adverse clini-
cal outcomes.2,3 Body mass index (BMI) serves as a widely 
used metric in clinical practice to evaluate body composition. 

However, it has limited accuracy in distinguishing between 
muscular tissue and fat tissue, which can be masked by the 
presence of edema or ascites, common complications in the 
context of decompensated cirrhosis. Given these substantial 
limitations in the applicability and validity of BMI for patients 
with various liver diseases, there has been growing interest 
in exploring alternative methods to evaluate body compo-
sition abnormalities and their clinical implications.4 Muscles 
are primarily involved in the process of mechanical activity, 
along with the production of various myokines. Adipose tis-
sue is capable of regulating energy levels through metabolic 
activity. The body composition of patients with liver disease 
differs considerably in terms of muscle and adipose tissue 
characteristics.5

In recent years, changes in the skeletal muscle compart-
ment have been shown to possess predictive value in a wide 
range of pathological conditions, including but not limited to 
chronic kidney disease, cardiovascular diseases, and can-
cer.6 Skeletal muscle abnormalities, including myosteatosis 
(abnormal muscle quality) and sarcopenia (abnormal mus-
cle quantity), are frequently observed in the context of liver 
diseases. Accumulating evidence has shown that the pres-
ence of sarcopenia is linked to inferior outcomes in different 
pathological conditions, while little is known about the clinical 
relevance of myosteatosis.7 Recently, several studies have 
demonstrated that myosteatosis, an entity distinct from sar-
copenia, exhibits a close relationship with worsening physical 
status, debilitating conditions, and poor prognosis in cirrho-
sis.8–11 Nachit et al. found that myosteatosis significantly in-
creased the mortality risk in asymptomatic adults.12 Accord-
ing to the updated guideline by the European Working Group 
on Sarcopenia in Older People, evaluation of muscle quality 
has attracted extensive attention due to its clinical signifi-
cance, as skeletal muscle mass not only predicts longevity 
in older adults but also serves as a critical prognostic marker 
for mortality in conditions like cancer, type II diabetes, and 
cardiovascular disease.13,14

Despite the growing recognition of myosteatosis as a clini-
cally relevant phenotype in chronic liver diseases, three in-
terrelated challenges have impeded its translation into clini-
cal practice and the advancement of research: first, the lack 
of a unified definition for myosteatosis in the context of liver 
disorders; second, the absence of standardized diagnostic 
criteria and measurement modalities, which preclude cross-
study comparison and consistent clinical assessment; and 
third, the underappreciation of myosteatosis as an independ-
ent prognostic factor, given that it is frequently conflated with 
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sarcopenia in prior literature. Collectively, these gaps create 
ambiguity in interpreting the clinical significance of myostea-
tosis, underscoring the need for a systematic synthesis to re-
solve inconsistencies and clarify its relevance to liver disease 
management.

To address these critical gaps, our narrative review criti-
cally examines three core aspects: (a) existing definitions, 
measurement modalities, and the challenges inherent in 
standardizing diagnostic criteria for myosteatosis in liver 
diseases; (b) the independent contributions of myosteatosis 
to the progression and outcomes of diverse liver conditions; 
and (c) mechanistic insights into the pathogenesis of my-
osteatosis derived from experimental and clinical studies. We 
further synthesize the available evidence to develop practical 
management strategies, while explicitly highlighting unre-
solved knowledge gaps and prioritizing directions for future 
research.

Methodology
To address the research questions, a comprehensive search 
was conducted in PubMed, which analyzed the pathogenesis 
and clinical implications of myosteatosis in the context of 
liver disease. Search terms comprised [(Non-alcoholic fatty 
liver disease) or (metabolic associated fatty liver diseases) 
or (NAFLD) or (MAFLD) or (liver cirrhosis) or (hepatocellu-
lar carcinoma) or (PSC) or (primary sclerosing cholangitis) 
or (hepatitis C virus) or (hepatitis B virus) or (chronic viral 
hepatitis) or (liver disease)] AND [(myosteatosis) or (muscle 
quality)], and publication dates from January 1, 2014 to No-
vember 1, 2023 were included. Among 687 publications iden-
tified through the database search, we excluded non-full-text 
or irrelevant clinical studies, duplicates, and case reports. To 
identify additional relevant publications, the identified articles 
were manually searched. Finally, 85 studies were collected.

Notably, non-alcoholic fatty liver disease (NAFLD) was of-
ficially renamed “metabolic dysfunction-associated fatty liver 
disease (MAFLD)” by an international expert panel in June 
2023, to better reflect the disease’s pathogenesis, centered 
on metabolic dysfunction rather than the exclusion of alco-
hol. Throughout this review, we use “MAFLD” to denote this 
condition.15,16

Definition, measuring modalities, and diagnostic 
criteria of myosteatosis

Definition of myosteatosis
Myosteatosis represents a distinct clinical entity that can oc-
cur independently of sarcopenia or obesity. Unlike sarcopenia 
or obesity, there is currently no standardized diagnostic ap-
proach for myosteatosis.

Myosteatosis refers to the abnormal accumulation of adi-
pose tissue within skeletal muscle, resulting in detrimental 
metabolic effects and musculoskeletal dysfunction.17 This 
condition encompasses three distinct adipose depots: in-
tramyocellular lipids (within fibers), intramuscular adipose 
tissue (between fibers), and intermuscular adipose tissue 
(between muscle groups).18 Since intramyocellular lipids 
serve as an energy substrate for muscle activity, their clas-
sification as a pathological factor may not be fully justified. 
On the contrary, intramuscular fat can disrupt muscle fiber 
alignment, leading to a loss of pennation angle and, there-
fore, weakening mechanical action due to reduced muscle 
quality.19,20 Taken together, we argue that intramuscular and 
intermuscular adipose tissue-defined myosteatosis appears 
to be more appropriate.

Measuring modalities and diagnostic criteria of my-
osteatosis
As myosteatosis is primarily a histological diagnosis, bi-
opsy is regarded as the gold standard for evaluation. Giv-
en the invasiveness of tissue sampling, biopsies are not 
widely adopted in daily clinical practice.19 Accordingly, a 
myriad of direct and indirect instruments have been pro-
posed to estimate adipose infiltration in skeletal muscle. 
Non-invasive measuring tools based on imaging include 
computed tomography (CT), peripheral quantitative CT, 
magnetic resonance imaging (MRI), magnetic resonance 
spectroscopy, and quantitative ultrasound.18,21 However, 
studies have not been able to use dual-energy X-ray ab-
sorptiometry to determine muscle density as a measure of 
myosteatosis.18

CT accounts for the most widely applied tool to indirect-
ly evaluate myosteatosis, which has been recommended 
by the Clinical Practice Guidelines of the European Asso-
ciation for the Study of the Liver in 2019.22 Myosteatosis 
represents a clinically relevant biomarker for assessing de-
generative muscular changes. Standardized measurement 
is performed through cross-sectional area segmentation 
at the third lumbar vertebra (L3) level, which has been 
established as the reference anatomical site. This region 
consistently encompasses both core musculature (includ-
ing the psoas and paraspinal muscles) and adipose tis-
sue compartments, and has been strongly correlated with 
whole-body muscle mass.23 In contrast, some studies pri-
oritize the psoas major alone, arguing it is less affected by 
abdominal adiposity and simpler and more convenient to 
measure. However, a recent study found that a psoas-only 
analysis underestimates the prevalence of myosteatosis 
compared to the total L3 musculature (27.7% vs. 66.0%, 
P < 0.0001).24

Although low radiation attenuation (RA) values in Houns-
field units (HU) are the standard method for determining my-
osteatosis, other groups have also introduced and employed 
heterogeneous selection criteria to characterize myosteato-
sis and identify patients susceptible to this muscle quality 
irregularity. The frequent metrics include absolute muscle 
attenuation values judged by gender-specific cut-offs con-
cerning the total skeletal muscle area versus the bilateral 
psoas muscle area.25–27 A significant increase in muscle RA 
following contrast administration suggests that non-contrast 
imaging may be more feasible in accurately identifying my-
osteatosis.28 In oncological populations, RA cut-off values 
were established as follows: <33 HU for patients with BMI 
≥ 25 kg/m2 and <41 HU for those with BMI <25 kg/m2, 
based on L3-level muscle assessment. The effectiveness has 
been verified by a range of observational studies regarding 
myosteatosis.10,25,29–33 Bannangkoon et al. defined it as skel-
etal muscle density ≤ 44.4 HU and ≤39.3 HU in males and 
females, respectively.34 Zeng et al. determined the diagnos-
tic threshold for myosteatosis as skeletal muscle density < 
32.82 HU in females and <38.93 HU in males among the 
Chinese population.35

Given the marked prevalence of fluid retention in patients 
with cirrhosis, the validity and feasibility of these BMI-ad-
justed cut-offs are ambiguous. Fluid accumulation increases 
tissue water content, which can artificially lower muscle RA 
and lead to the overdiagnosis of myosteatosis, as edema-
tous muscle may fall below the standard HU thresholds even 
without significant fat infiltration. To address this limitation, 
intramuscular adipose tissue content (IMAC), a novel selec-
tion criterion for assessing myosteatosis, has been proposed. 
IMAC is calculated as the L3 region of interest of the multifi-
dus muscle divided by the region of interest of subcutaneous 
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adipose tissue (Fig. 1).36,37 Accordingly, we utilized IMAC-
defined myosteatosis at the L3 level, with cut-offs of >−0.44 
and >−0.37 in males and females, respectively.38 It is high-
lighted that there are other selection criteria or relevant cut-
offs to define and diagnose myosteatosis (Table 1).39–44

However, CT is incapable of directly measuring fat deposi-
tion and the location of lipid droplets in the muscle or discrim-
inating between possible fat distribution phenotypes. Hence, 
it is necessary to investigate further the specific location and 
features of infiltrated muscle fat in the context of different 
liver diseases.18,45 The magnitude of myosteatosis can be ac-
curately captured by using chemical shift MRI to determine 
the muscle fat fraction, which shows a strong correlation with 
histopathologic analyses.46 In this respect, a study measured 
the fat fraction of erector spinae muscles based on MRI and 
identified myosteatosis as a fat fraction less than 0.8 in liver 
transplantation (LT) recipients.47

Notably, the prevalence of myosteatosis in liver diseases is 
not a fixed value. Still, it varies substantially by the diagnostic 
criteria employed, including the choice of measurement mo-
dality and associated cut-off values. This methodological vari-
ability explains the wide range of prevalence estimates across 
studies and underscores the need to contextualize all preva-
lence data with the specific tools used to define myosteatosis.

The choice of myosteatosis assessment modality depends 
on a balance of accuracy, practicality, and patient factors (Sup-
plementary Table 1). CT remains the most widely used meth-

od in clinical research due to its high accessibility and robust 
correlation with histopathological findings (the gold standard 
for myosteatosis). However, its radiation risk limits use in lon-
gitudinal studies or vulnerable populations. MRI offers supe-
rior accuracy for quantifying intramuscular fat fraction with no 
radiation but is constrained by high cost, long scan time, and 
limited availability. The potential of ultrasound as a low-cost, 
point-of-care tool for screening is limited by its operator de-
pendency and current lack of standardized diagnostic criteria 
for myosteatosis. For researchers designing cohort studies, CT 
is recommended for large-scale analyses (balancing accuracy 
and feasibility), while MRI is prioritized for mechanistic studies 
requiring precise fat fraction quantification.

Contributory role of myosteatosis in various liver 
diseases

Effect of myosteatosis in NAFLD
MAFLD (formerly NAFLD) has progressively emerged as a 
leading etiology of chronic liver disease and the predominant 
cause of hepatocellular carcinoma (HCC) among LT candi-
dates in the United States.48,49 During the last two decades, 
the global prevalence of MAFLD has approached 30%, and 
a trend analysis indicates that 37% of adults worldwide are 
likely to experience MAFLD by 2019.50 Notably, the preva-
lence of myosteatosis in the context of MAFLD without obe-

Fig. 1.  Abdominal computed tomography images taken at the third lumbar vertebra to quantify intramuscular adipose tissue and muscle radiodensity 
in patients with cirrhosis. (A) Cross-sectional computed tomography image of subfascial muscular tissue in the multifidus muscle (two red circles) and subcutaneous 
fat (four yellow circles). (B) Cross-sectional computed tomography image for a male patient with IMAC of −0.65. (C) Cross-sectional computed tomography image for 
a male patient experiencing myosteatosis with IMAC of −0.41. (D) Cross-sectional computed tomography image for a female patient experiencing myosteatosis with 
IMAC of -0.31. IMAC, intramuscular adipose tissue content.
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sity is reported to be around 31.7%.39

Adverse muscle composition (AMC), characterized by high 
muscle fat and low muscle volume, is prevalent in subjects 
with MAFLD (14.0%).51 This AMC phenotype is also linked to a 
high prevalence of metabolic comorbidity along with reduced 
function. Ding et al. demonstrated a positive, independent 
connection between plasma Cathepsin D (CTSD) levels and 
myosteatosis in patients with MAFLD, supporting the notion 
that skeletal muscle plays a pivotal role and its derangement 
may lead to metabolic disturbances, consequently resulting 
in the progression of metabolic syndrome.52 In children with 
MAFLD, researchers have found that intermuscular abdomi-
nal adipose tissue mediates the reduction of hepatic steatosis 
via a multicomponent intervention.53 Kitajima et al. showed 
a correlation between the stage of non-alcoholic steatohep-
atitis (NASH) and IMAC (odds ratio = 2.444, P < 0.05).54 
Hsieh et al. demonstrated that severe myosteatosis may 
give rise to an increased risk of NASH in patients at an early 
stage of MAFLD.55 Collectively, these findings suggest that 

muscle lipid infiltration may represent a potential biomarker 
associated with NASH progression.43,55 In addition, severe 
myosteatosis exhibited a significant association with fibro-
sis progression in the context of MAFLD.55–58 Furthermore, 
Nachit et al. used proton density fat fraction derived from 
MRI to evaluate myosteatosis within skeletal muscles at the 
L3 level and showed that the magnitude and heterogeneity 
of myosteatosis were linked to HCC independent of fibrosis 
stage in individuals with MAFLD. In particular, this phenom-
enon was more pronounced in those with NASH.59 Linge et 
al. established a reference of high muscle fat infiltration over 
the 75th percentile of a whole population (40,177 subjects) 
with respective male and female thresholds (>7.69% and 
>8.82%), in the manner of MRI-screened thighs.60 Their 
findings revealed that AMC could predict all-cause mortality 
in individuals diagnosed with MAFLD. In contrast, some other 
studies revealed that the degree of myosteatosis had no rela-
tion to the levels of transaminases, magnitude of hepatic fat, 
or significant hepatic fibrosis (Table 2).46,61

Table 2.  Summary of studies concerning the clinical relevance of myosteatosis in patients with MAFLD

Author Study popu-
lation

Diagnostic 
criteria Cut-off Mean (± SD)/

median (IQR)
Preva-
lence

Outcome associated 
with myosteatosis/
Major findings

Kitajima 
et al. 
201354

208 patients with 
MAFLD (for-
merly NAFLD)c

CT: L3 
IMAC

NA −0.23 ± 0.13 NA IMAC and aging were 
risk factors associ-
ated with the se-
verity of NASH

Hsieh et 
al. 202355

338 patients with 
MAFLD (for-
merly NAFLD)

CT: L3 
muscle RA

<40.03 HU 
in femalea; 
<47.13 HU 
in male

47.39 ± 5.75 
in MAFLD; 
45.63 ± 5.98 
in early NASH

21.1% in 
the MAFLD; 
33.3% in 
early NASH

Severe myosteatosis 
was significantly associ-
ated with early NASH 
and fibrosis progression 
in early-stage MAFLD

Hsieh et 
al. 202156

521 patients with 
MAFLD (for-
merly NAFLD)

CT: L3 
muscle RA

<39.77 HU in 
BMI ≥25kg/m2; 
<42.57 HU in 
BMI <25kg/m2

46.81 ± 6.63 in 
F0-F1; 44.32 ± 
7.15 in F2-F4

46.1% in 
significant 
fibrosis

Myosteatosis had addi-
tive values for predict-
ing significant fibrosis

Nachit et 
al. 202157

48 obese patients CT: L3 
SMFI

NA 32.9 ± 6.5 NA Myosteatosis, but 
not sarcopenia, was 
strongly and indepen-
dently associated with 
liver stiffness in obese 
patients with MAFLD

Kim et al. 
202358

13,452 subjects CT: L3 
NAMA/
TAMA index

NA MAFLD; 68.3 
± 9.9 in fe-
males; 76.4 ± 
7.9 in males

NA The NAMA/TAMA index 
may help identify sub-
jects at a high risk of 
MAFLD and liver fibrosis 
for further evaluation

Nachit et 
al. 202359

72 patients with 
MAFLD (for-
merly NAFLD)

MRI: L3 
PDFFES

NA 9.6 ± 5.5% 
in NAFLD with 
HCC; 5.7 ± 
3.0% in those 
without

NA Myosteatosis was 
associated with the 
presence of HCC in a 
population of biopsy-
proven MAFLD patients

Linge et 
al. 202360

10,138 subjects MRI: thighs 
MFIb

High MFI: 
>8.82% in fe-
males; >7.69% 
in males

8.03% ± 2.16% NA High muscle fat was 
a strong predictor of 
all-cause mortality in 
individuals with MAFLD

aThe lowest quartile stratified by sex was regarded as the cut-off for muscle attenuation to define severe myosteatosis. bMuscle fat infiltration: The mean fat fraction 
in the “viable muscle tissue” of the right and left anterior thighs. cMAFLD replaces the former term NAFLD per the June 2023 international nomenclature update, em-
phasizing metabolic pathogenesis over alcohol exclusion. NA indicates that the original study did not report data; these entries do not represent missing data from our 
analysis but reflect unreported information in the cited literature. BMI, body mass index; CT, computed tomography; HCC, hepatocellular carcinoma; HU, Hounsfield 
units; IMAC, intramuscular adipose tissue content; L3, third lumbar vertebra; MAFLD, metabolic-associated fatty liver disease; MFI, muscle fat infiltration; NAFLD, 
non-alcoholic fatty liver disease; NAMA, normal attenuation muscle area; NASH, nonalcoholic steatohepatitis; PDFFES, proton density fat fraction of erector spinae; RA, 
radiation attenuation; SMFI, skeletal muscle fat index; TAMA, total abdominal muscle area.
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Effect of myosteatosis in chronic viral hepatitis
The mainstays of chronic viral hepatitis B (HBV) and chronic 
viral hepatitis C (HCV) have posed a heavy public burden on 
healthcare resources worldwide. In 2006, it was estimated 
that 360 million individuals were suffering from chronic hep-
atitis B, and two billion individuals were infected with HBV 
globally.62 Chronic viral hepatitis causes permanent liver in-
flammation, resulting in severe and ultimately irreversible fi-
brotic damage to the hepatic parenchyma. Due to a proactive 
vaccination policy, the burden of HBV is markedly decreasing, 
but HBV prevalence remains endemic in specific regions.63 
HCV affects an estimated 3% of the global population, and 
subjects inaccessible to effective treatment are prone to a 
high risk of developing cirrhosis over a span of twenty years.

Endo et al. found that the IMAC values were significantly 
increased in response to interferon-free direct-acting anti-
viral treatment (−0.33 versus −0.34, P < 0.01), indicating 
a connection between myosteatosis and HCV.64 Han et al. 
analyzed a cohort of patients with HBV and sarcopenia. They 
stated a higher prevalence of evident liver fibrosis relative to 
those without sarcopenia but experiencing central obesity, 
presented as BMI ≥ 25 kg/m2.65 Notably, another study re-
ported that 96.5% of patients with sarcopenia also exhibited 
myosteatosis, implicating a reciprocal effect between sarco-
penia and myosteatosis.29 Taken together, further investiga-
tion is warranted to delve into the contributory role of my-
osteatosis in the context of chronic viral hepatitis.

Effect of myosteatosis in liver cirrhosis
About one million deaths worldwide annually are attribut-
able to cirrhosis, which ranks as the eleventh most prevalent 
cause of death, alongside the third major cause among indi-
viduals aged 45–64 years, accounting for 3.5% of all global 
deaths in combination with liver cancer.66 The prevalence 
of myosteatosis in cirrhosis varies substantially by diagnos-
tic methodology. When defined using CT-derived muscle RA 
with BMI-adjusted cut-offs (<41 HU for BMI < 25 kg/m2 
and <33 HU for BMI ≥ 25 kg/m2), the reported prevalence 
ranges from 52% to 74%.9,10,29,31 In contrast, when diag-
nosed via IMAC at the L3 level (cut-offs: >−0.44 for males 
and >−0.37 for females), the prevalence in cirrhotic cohorts 
is markedly lower, at 17.55% (83/473 patients) and 18.8% 
(38/202 patients), respectively.8,37 This discrepancy directly 
reflects the impact of diagnostic criteria on epidemiological 
estimates.

Previous studies have shown that myosteatosis worsens 
the prognosis of patients with cirrhosis, which is related to a 
higher Child-Pugh score, decompensated stage, and higher 
long-term mortality.10,29,31 Compared with the traditional 
Model for End-stage Liver Disease (MELD) score, Lattanzi et 
al. constructed a MELD-Sarco-Myo-HE score by incorporat-
ing the presence of myosteatosis to improve predictive ac-
curacy regarding three- and six-month all-cause mortality.31 
Ebadi et al. also revealed that a 2% decrease in the mortality 
risk accompanies every one HU increase in the muscle radio 
density.30 Additionally, myosteatosis has been linked to overt 
hepatic encephalopathy (HE) and minimal HE among cirrho-
sis before and after transjugular intrahepatic portosystemic 
shunt.9,67 Bhanji and colleagues demonstrated a significantly 
higher prevalence of myosteatosis in patients with overt HE 
(70%) compared to those without (45%; P < 0.001), sug-
gesting a potential association between myosteatosis and 
complications in cirrhosis.9 Relative to sarcopenia, myostea-
tosis also exhibited a closer correlation with portal hyper-
tension (r = −0.266, P < 0.001). Moreover, myosteatosis 
has proved to be associated with several complications, such 

as variceal bleeding, spontaneous bacterial peritonitis, as-
cites, infections, and HCC.35,68 Collectively, current evidence 
demonstrates a significant association between myosteatosis 
and worse clinical outcomes in cirrhosis. However, the ex-
act nature of this relationship (whether causal, synergistic, 
or parallel processes) requires further investigation through 
longitudinal mechanistic studies (Table 3).

Effect of myosteatosis in LT
For patients with end-stage liver disease, LT remains the 
most effective treatment option. The influence of nutritional 
status on postoperative outcomes following LT is still under 
intensive investigation. Bhanji et al. noticed that the frequen-
cy of myosteatosis increased while awaiting LT.69 In addition, 
they also revealed that the percentage change in mean HU 
per 100 days post-transplant exhibited a significant decrease 
(median of −2.7%, P < 0.001), suggestive of an increase in 
myosteatosis.

Myosteatosis has been identified as being interconnected 
with a spectrum of outcomes, including postoperative ven-
tilation time, post-LT infections, hospital and intensive care 
unit stay, significant morbidity and mortality, graft- and 
patient survival, costs, and pulmonary outcomes.25,70–73 A 
study recruiting 152 patients undergoing LT, with a long-
term follow-up of 56 months, demonstrated that myostea-
tosis was associated with increased post-transplant mortality 
(three months, one year, and five years survival probabili-
ties: 72% versus 95%, 63% versus 90%, 54% versus 84%, 
respectively, P = 0.001).70 Incorporating myosteatosis into 
the MELD score can enhance its predictive accuracy regard-
ing pre-LT mortality and improve the prognostic value of the 
Balance-of-Risk score, with the aim of screening patients for 
early LT and facilitating the utilization of organ resources.25,31 
These findings suggest that myosteatosis may serve as an 
important prognostic marker during the perioperative period. 
These results highlight the need for future studies to inves-
tigate whether multimodal interventions addressing myoste-
atosis and its underlying pathophysiology could potentially 
benefit high-risk patients (Table 4).

Effect of myosteatosis in HCC
HCC often originates from advanced hepatic parenchymal 
disorders in addition to cirrhosis, and is the third most com-
mon cause of cancer-associated mortality globally. Previous 
investigations covering both basic and clinical aspects have 
uncovered a robust association between chronic liver disease 
and pathological alterations of body composition.74 Chen et 
al. identified myosteatosis in 15.2% of 138 patients receiv-
ing immune checkpoint inhibitor therapy, using a muscle RA 
with BMI-adjusted cut-offs (<41 HU for BMI < 25 kg/m2 and 
<33 HU for BMI ≥ 25 kg/m2).75 In comparison, Hamagu-
chi et al. reported a preoperative myosteatosis prevalence 
of 43% among 606 patients undergoing hepatectomy, defin-
ing myosteatosis by IMAC (>−0.229 in females, >−0.358 
in males).76 Similarly, Masetti et al. observed the highest 
prevalence (76%) in their cohort of 151 patients treated with 
trans-arterial embolization, defined by IMAC with sex-spe-
cific cut-off values of >−0.229 for females and >−0.358 for 
males.40 This wide range likely reflects variations in the study 
populations and diagnostic criteria.

Myosteatosis independently predicts worse outcomes in 
advanced HCC patients receiving immunotherapy. Multivari-
able analysis (adjusted for liver function, tumor extent, and 
demographics) revealed that myosteatosis was significantly 
associated with reduced disease control rates and worse pro-
gression-free survival (hazard ratio = 2.0, P = 0.014).75 In a 
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cohort of 606 patients with HCC, Hamaguchi and colleagues 
demonstrated that patients with a high IMAC had significant-
ly lower recurrence-free survival (RFS) and overall survival 
(OS) rates.76 Furthermore, high IMAC was identified as a sig-
nificant risk factor for mortality after hepatectomy. Regard-
ing a single-center HCC cohort, myosteatosis was linked to 
suboptimal outcomes, such as various clinical conditions, but 
had a limited impact on the RFS and long-term OS.77

Some articles have demonstrated that preoperative mus-
cle steatosis, determined by IMAC, was strongly linked to 
an increased likelihood of major postoperative complications 
(intra-abdominal abscess, ascites, and pleural effusion), es-
pecially infectious complications.78,79 Intriguingly, Masetti et 
al. found that myosteatosis was not related to the compli-
cation rate or OS rate in a cohort of 151 patients with cir-
rhosis receiving trans-arterial embolization.40 On the other 
hand, Bannangkoon and colleagues found that the presence 
of myosteatosis was closely associated with reduced trans-
arterial chemoembolization response (56.1% versus 68.7%, 
adjusted odds ratio = 0.49) and poor survival (15.9 versus 
27.1 months, P < 0.001).34 Although the existing literature 
reports conflicting results, preoperative identification of pa-

tients with elevated IMAC remains clinically recommended 
before hepatectomy. Therefore, preoperative optimization of 
myosteatosis may be beneficial to patient selection and im-
prove postoperative outcomes in the context of hepatectomy 
(Table 5).

Effect of myosteatosis in primary sclerosing cholan-
gitis (PSC)
As a chronic cholestatic liver disease, PSC is characterized by 
fibroinflammatory destruction of the biliary tree, leading to 
liver failure, cirrhosis, and eventually cholangiocarcinoma.80 
From a clinical perspective, significant challenges remain in 
improving outcomes for patients with PSC.

Total skeletal muscle mass has been established as a 
significant prognostic factor for diverse clinical outcomes in 
chronic liver disease, including risks of hepatic decompensa-
tion, post-treatment complications, and mortality. More re-
cently, the clinical relevance of myosteatosis has also been 
recognized in this patient group. Praktiknjo et al. established 
intramuscular fat fraction as a proxy for myosteatosis, which 
is independently predictive of 10-year transplant-free surviv-
al in the PSC population.81 The finding suggested that indices 

Table 3.  Summary of studies concerning the clinical relevance of myosteatosis in patients with cirrhosis

Author Study 
population

Diag-
nostic 
criteria

Cut-off Prevalence Outcome associated with my-
osteatosis/Major findings

Feng et 
al. 20218

202 patients 
with cirrhosis

CT: L3 
IMAC

> −0.37 in female; 
> −0.44 in male

18.8% Significant relationships between 
IMAC and frailty phenotype were 
exclusively expressed in males

Bhanji et 
al. 20189

675 patients 
with cirrhosis

CT: L3 
Musle-RA

<33 HU in BMI ≥ 
25 kg/m2; <41 HU 
in BMI <25 kg/m2

52% Myosteatosis was independently as-
sociated with overt hepatic encepha-
lopathy in patients with cirrhosis

Montano-
Loza et al. 
201610

678 patients 
with cirrhosis

CT: L3 
Muscle-RA

<33 HU in BMI ≥25 
kg/m2; <41 HU in 
BMI <25 kg/m2

52% Myosteatosis was independently 
associated with a higher risk of 
long-term mortality in cirrhosis

Geladari 
et al. 
202329

197 patients 
with cirrhosis

CT: L3 
Muscle-RA

<33 HU in BMI ≥25 
kg/m2; <41 HU in 
BMI <25 kg/m2

73.6% Myosteatosis was associated 
with advanced age, low skel-
etal mass, more severe liver cir-
rhosis, and poor prognosis

Ebadi et 
al. 202230

855 patients 
with cirrhosis

CT: L3 
Muscle-RA

<33 HU in males; 
<28 HU in females

34% Myosteatosis was associated with 
increased mortality. The coexistence 
of myosteatosis and sarcopenia has 
been linked to worse outcomes

Lattanzi et 
al. 201931

249 patients 
with cirrhosis

CT: L3 
Muscle-RA

<33 HU in BMI ≥25 
kg/m2; <41 HU in 
BMI <25 kg/m2

54% Myosteatosis was independently 
associated with mortality

Zeng et 
al. 202335

168 patients 
with cirrhosis

CT: L3-
SMD

<32.82 in female; 
<38.93 in male

49.4% in those 
aged 60 - 69 years, 
80.0% in those 
older than 70 years

Myosteatosis, rather than sar-
copenia, had a close correla-
tion with portal hypertension

Wang et 
al. 202237

473 patients 
with decom-
pensated 
cirrhosis

CT: L3 
IMAC

> −0.37 in female; 
> −0.44 in male

17.55% Higher VSR/VATI and advanced 
age were associated with myostea-
tosis. Myosteatosis was not sig-
nificantly related to longer LOH

Yin et al. 
202367

108 cirrhotic 
patients 
undergo-
ing TIPS

CT: L3 
right 
psoas 
muscle-RA

<33 HU in BMI ≥25 
kg/m2; <41 HU in 
BMI <25 kg/m2

32.4% Myosteatosis can serve as a re-
liable predictor of developing 
overt HE and mortality in cir-
rhotic patients after TIPS

BMI, body mass index; CT, computed tomography; HCC, hepatocellular carcinoma; HE, hepatic encephalopathy; HU, Hounsfield units; IMAC, intramuscular adipose 
tissue content; L3, third lumbar vertebra; LOH, length of hospitalization; PDFFES, proton density fat fraction of erector spinae; RA, radiation attenuation; SMD, skeletal 
muscle density; TIPS, transjugular intrahepatic portosystemic shunt; VATI, visceral adipose tissue index; VSR, visceral-to-subcutaneous adipose tissue ratio.
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of body composition may constitute alternative indicators for 
organ allocation proposed for PSC patients at the stage of 
cirrhosis.

Miscellaneous
Horii et al. recruited 115 subjects who underwent initial liv-
er resection for colorectal liver metastasis (CLM) and found 
that high IMAC was linked to postoperative complications of 
Clavien-Dindo grade 3 or worse, in addition to lower OS and 
RFS.42 Dijk et al. verified that myosteatosis was indepen-
dently associated with shorter OS.82 Additionally, Shiozawa 
et al. indicated that IMAC before the second liver resection 
was the most important predictor for RFS and OS in patients 
undergoing two-stage hepatectomy for CLM.83 Early identifi-
cation of apparent variations in body composition is impera-
tive to perform timely perioperative intervention and thereby 
enhance postoperative outcomes in the context of CLM.

Etiological determinants and pathophysiological 
pathways of myosteatosis
Both intermuscular and intramuscular fat deposition are sig-
nificantly influenced by age and race.20,45 Aging is associ-
ated with diminished differentiation capacity of muscle stem 
cells into myocytes, which promotes preferential adipocyte 
differentiation. This process ultimately leads to increased in-
termuscular fat deposition in both males and females.84–86 
Miljkovic and colleagues demonstrated that the incidence of 
intermuscular fat was higher among African individuals com-
pared to Caucasian individuals. However, the precipitating 
factors responsible for these differences remain unknown, 
and they hypothesized that the variation in skeletal muscle 
fat accumulation may be triggered by ethnic variation in car-
nitine palmitoyltransferase-1B allele frequencies.87

The pathogenesis of myosteatosis involves multifactorial 
and complex mechanisms, primarily driven by alterations in 
fatty acid and glycogen metabolism. Previous fundamental 
studies have stated that muscular changes not only contrib-
ute to hepatic dysfunction but also reflect disease-stage pro-

gression in liver disorders.45 Data explaining the mechanisms 
by which excess muscle fat infiltration and accumulation in 
chronic liver disease occur are scarce. Therefore, further re-
search is warranted to elucidate the mechanical pathways 
from both clinical and molecular perspectives. Based on cur-
rent evidence, we herein propose several potential patho-
genic mechanisms, with a particular focus on conducting a 
preliminary analysis of the liver-muscle axis (Fig. 2).

Hyperammonemia
Liver dysfunction impairs urea cycle activity, leading to sys-
temic hyperammonemia, which may be a predisposing factor 
in the development of myosteatosis in cirrhosis. Research 
has shown that hyperammonemia can induce the transcrip-
tional upregulation of myostatin, which subsequently sup-
presses muscle protein synthesis and promotes fat accu-
mulation.88,89 Stretch et al. found that all 18 differentially 
abundant genes (DAGs) linked to oxidative phosphorylation 
were downregulated in the muscles of patients with myoste-
atosis, implying that oxidative phosphorylation is a canonical 
pathway.90 Increased uptake of ammonia by muscular tissue 
induces mitochondrial dysfunction through the cataplerosis 
of α-ketoglutarate, which further leads to impaired mito-
chondrial oxidative phosphorylation in addition to reduced 
muscular lipid oxidation.91

Insulin resistance (IR)
IR is a key mediator of the liver-muscle axis in myosteato-
sis, which is a common pathophysiological dysregulation in 
patients with MAFLD or cirrhotic patients.92 Additionally, it 
is hypothesized that IR in the context of cirrhosis is associ-
ated with a reduction in peripheral (muscle) glucose uptake, 
rather than an increase in liver glucose production.93 Fat load 
in the muscle and hepatocyte cells is closely linked to IR in 
lean, obese, and diabetic individuals. IR leads to compensa-
tory hyperinsulinemia, which impairs the suppression of glu-
coneogenesis, decreases glycogen synthesis, increases the 
uptake of free fatty acids and lipogenesis, alters the trans-
port of triglycerides, and inhibits beta-oxidation in steatotic 

Table 4.  Summary of studies concerning the clinical relevance of myosteatosis in patients undergoing liver transplant

Author
Study 
popula-
tion

Diag-
nostic 
criteria

Cut-off Mean (± SD)/
median (IQR)

Preva-
lence

Outcome associated with my-
osteatosis/Major findings

Bhanji 
et al. 
201969

293 
patients 
undergo-
ing LDLT

CT: L3 
Muscle-
RA

<33 HU in BMI 
≥25 kg/m2; 
<41 HU in BMI 
<25 kg/m2

42.8 ± 9.1 in 
non-sarcope-
nia; 41.4 ± 9.0 
in sarcopenia

NA Myosteatosis progressively increased in 
both pre- and post-transplant groups

Molwitz 
et al. 
202370

152 
patients 
undergo-
ing LDLT

CT: L3 
Muscle-
RA

NA 38 ± 8 in 
pre-LT; 35 ± 
10 in post-LT

NA Myosteatosis was associated with a 
higher post-transplant mortality, and 
did not improve after transplant

Czigany 
et al. 
202171

225 
patients 
undergo-
ing OLT

CT: L3 
Muscle-
RA

<33 HU in BMI 
≥25 kg/m2 
<41 HU in BMI 
<25 kg/m2

32 ± 11 in 
female; 35 ± 
11 in males

44% The probability of graft and pa-
tient survival was significantly lower 
in patients with myosteatosis

Irwin 
et al. 
202173

106 
patients 
undergo-
ing LT

CT: L3 
Muscle-
RA

<33 HU in BMI 
≥25 kg/m2 
<41 HU in BMI 
<25 kg/m2

32 ± 8 72% Patients with myosteatosis had 
a higher risk of death and al-
lograft failure at 1 year

NA indicates that the original study did not report data; these entries do not represent missing data from our analysis but reflect unreported information in the cited 
literature. BMI, body mass index; CT, computed tomography; HCC, hepatocellular carcinoma; HE, hepatic encephalopathy; HU, Hounsfield units; IMAC, intramuscular 
adipose tissue content; L3, third lumbar vertebra; LDLT, living donor liver transplantation; LT, liver transplantation; MELD, model for end-stage liver disease; OLT, or-
thotopic liver transplantation; RA, radiation attenuation.
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hepatocytes.94 Taken together, myosteatosis is associated 
with excessive circulating fatty acids and IR.

Chronic inflammation
Chronic liver disease triggers persistent hepatic inflamma-
tion, characterized by the activation of Kupffer cells and the 
release of proinflammatory cytokines. These cytokines, in-
cluding C-reactive protein (CRP), interleukin-6, and tumor 
necrosis factor-α, enter the systemic circulation and target 
skeletal muscle, where they disrupt lipid metabolism and 
promote the accumulation of fat. High levels of interleukin-6 
and CRP positively correlate with the magnitude of fat mass 
accumulation.95 Kim et al. also revealed a significant cor-
relation between myosteatosis indices and CRP levels, par-
tially explaining the pathogenesis of inflammation-dictated 
myosteatosis.58 In addition to their direct impact on insu-
lin signaling, cytokines modulate the secretion of myokines 
from skeletal muscle. A consequent dysregulation of these 
myokines can exacerbate conditions of muscle wasting and 
metabolic dysfunction.96

Other underlying mechanisms in liver diseases
Shared pathogenic factors that can underlie the development 
of both chronic liver disease and myosteatosis are enumer-
ated in the following section.

Mitochondrial dysfunction and energy metabolism: 
Mitochondrial dysfunction may lead to reduced oxidation of 
fatty acids, resulting in excessive lipid storage in the mus-
cle cells. In a rat model of rotator cuff injury, Gumucio and 
colleagues observed a decline in the ability of mitochon-
dria to oxidize lipids during the early process.97 Meanwhile, 
transcriptional changes were evident, including an increase 
in lipid droplet storage with a decrease in fatty acid uptake 
and mobilization from lipid droplet stores. In patients with 
myosteatosis, transcriptomic analysis revealed a lower ex-
pression of DAGs linked to oxidative phosphorylation in the 
muscles (i.e., Ndufa3 and ATP5G1).90 Mitoquinone Q, as a 
mitochondria-targeting antioxidant, was also verified to en-
hance the utilization of accumulated lipids and reduce the 
magnitude of myosteatosis in mice bearing C26 tumors.98 
Retinoic acid receptor-related orphan receptor-α was found 

to enhance mitochondrial oxidative capacity by controlling 
the expression of GABPα and TFAM, thus reducing muscular 
lipid accumulation.99 Wu et al. demonstrated that adenosine 
monophosphate-activated protein kinase (a promoter of mi-
tochondrial health) regulated lipid accumulation in skeletal 
muscle cells via fat mass and obesity-associated protein ex-
pression, which is responsible for the demethylation of N6-
methyladenosine in experimental models of C2C12 cells and 
mice.100 Therefore, adenosine monophosphate-activated 
protein kinase could regulate the energy state of skeletal 
muscle cells by facilitating mitochondrial biogenesis.

Collectively, current evidence suggests that decreased 
lipid oxidation and impaired mitochondrial oxidative phos-
phorylation in skeletal muscle significantly contribute to the 
development of myosteatosis. These findings suggest that 
targeting mitochondrial dysfunction may represent a promis-
ing therapeutic strategy; however, further research is needed 
to fully elucidate the multifactorial etiology.

CTSD levels: CTSD, a lysosomal aspartyl endopeptidase, 
is present in nearly all cell types and organ systems, where it 
plays critical roles in metabolic functions.101 CTSD correlates 
with impaired lipid metabolism, disease severity, and higher 
levels of inflammation in MAFLD, and Ding et al. found a posi-
tive correlation between plasma CTSD levels and myosteato-
sis.52 Furthermore, this connection was independent of BMI, 
age, sex, hepatic steatosis, and waist circumference. The au-
thors proposed that CTSD, as a mediator instigating ectopic 
fat accumulation, promotes the onset and development of 
myosteatosis. Notably, Yadati and colleagues demonstrated 
that extracellular CTSD inhibition in mouse models promoted 
the activation of several lipid metabolic pathways (linoleic 
acid metabolism, steroid hormone biosynthesis, and fatty 
acid synthesis/elongation), partially responsible for a modest 
attenuation of systemic inflammation.102 The protein encod-
ed by the CTSD gene is involved in processes such as protein 
turnover and proteolytic activation of hormones and growth 
factors. Mutations in the CTSD gene may disrupt these nor-
mal physiological processes, impair muscle metabolism, and 
thereby contribute to the development and progression of 
myosteatosis. Further research is needed to precisely iden-
tify the genetic components that may underlie the observed 
correlation between CTSD and myosteatosis. Collectively, the 

Fig. 2.  A summary of mechanistic pathways responsible for the advent and progression of myosteatosis-center on the liver-muscle axis. Evidence-sup-
ported pathways are represented by solid lines. Hypothetical pathways are represented by dashed lines. Insulin resistance could impact glucose disposal and increase 
uptake of FAA, giving rise to lipogenesis. Hyperammonemia could increase uptake of ammonia by muscular tissue and induce mitochondrial dysfunction, responsible for 
reduced muscular lipid oxidation. Chronic inflammation, characterized by the release of proinflammatory cytokines, is positively correlated with fat mass accumulation. 
Nutritional status and functional genes and proteins could promote myosteatosis by influencing lipid metabolism. Mitochondrial dysfunction leads to impaired mitochon-
drial oxidative phosphorylation and decreased lipid oxidation, resulting in excessive lipid storage in the skeletal muscle. Cathepsin D may mediate the development 
of myosteatosis by instigating ectopic lipid accumulation. ASNSD1, asparagine synthetase domain containing 1; DAGs, differentially abundant genes; CRP, C-reactive 
protein; IL-6, interleukin-6; TNF-α, tumor necrosis factor α; FFA, free fatty acid. α-KG, α-ketoglutarate; ↓, decrease; ↑, increase. (Created with bioRender.com)
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precise molecular mechanisms through which CTSD induces 
or exacerbates myosteatosis require further elucidation.

Nutritional status: Intriguingly, both nutrient overload 
and nutritional deficiencies can lead to myosteatosis. Previ-
ous studies demonstrate that excessive fat and calorie intake 
contribute to myosteatosis, as evidenced by animal models 
of myosteatosis that primarily employ diet-induced obesity 
paradigms.103 Plin2, a lipid droplet protein repressing lipoly-
sis, has been regarded as a causative factor of steatosis in 
the muscle and liver. A study showed that the E3 ubiquitin 
ligase Ubr1 targeted Plin2 for degradation in a specific amino 
acid-dependent manner. Specifically, Ubr1 is allosterically 
activated by binding to type 1 (arginine, histidine, and ly-
sine) or type 2 (leucine, isoleucine, phenylalanine, trypto-
phan, and tyrosine) free amino acids via its UBR-box-1 and 
UBR-box-2 domains, respectively. In the absence of these 
amino acids, Ubr1 remains auto-inhibited, leading to the fail-
ure of Ubr1-mediated Plin2 ubiquitination and degradation, 
which ultimately promotes the accumulation of lipid droplets 
and the onset of steatosis.104 Another study indicated that 
leucine can reduce intramyocellular lipid independent of the 
rapamycin complex 1 to upregulate gene expression associ-
ated with fatty acid metabolism in palmitate-treated C2C12 
myotubes.105 Muscle cell lipid infiltration has also been prov-
en to correlate with reduced protein synthesis.106

Function of genes and proteins: Age-related changes 
in skeletal muscle include pathological fat accumulation. 
Through integrative analysis of single-nucleus transcriptomic 
data from aged human skeletal muscle and Laiwu pigs exhib-
iting elevated intramuscular adiposity, Wang and colleagues 
identified both conserved and species-specific cellular sub-
populations linked to myosteatosis pathogenesis. Their find-
ings demonstrated significant upregulation of established 
senescence markers (VIM and AGT) in elderly human mus-
cle tissue, paralleled by enhanced expression of key adipo-
genic regulators, including ADIPOQ, FABP4, PPARG, CPT1A, 
and SCD.107 The protein asparagine synthetase domain-
containing 1 (hereinafter referred to as ASNSD1), which is 
structurally conserved across many species, exhibits maxi-
mum expression in skeletal muscle in humans, according to 
whole-body gene expression studies. One study found that 
ASNSD1−/− mice develop a progressively degenerative myo-
pathy responsible for severe myosteatosis.108 Furthermore, 
five DAGs impacting lipid metabolism (ADIPOR2, APOL1, 
APOL2, APOO, and PON3), which may contribute to lipid ac-
cumulation, were identified in myosteatosis but not, or to a 
much lesser extent, compared with sarcopenia.90

Prevention and treatment of myosteatosis
Currently, there is no consensus or guideline on the treat-
ment options for myosteatosis in patients with liver diseases, 
a gap attributed to the lack of evidence, as well as a lack 
of solid data based on randomized controlled trials. The fol-
lowing are potential treatments and management strategies 
aimed at improving myosteatosis (Supplementary Table 2).

Nutritional intervention
Excessive fat and calorie intake have been reported to aug-
ment myosteatosis.103 In NASH, one suitable treatment 
option is energy restriction, commonly achieved through a 
low-carbohydrate diet, low-fat, and low-calorie intake.109 
However, a dilemma exists, as caloric restriction-related 
weight loss in overweight/obese patients may result in con-
current loss of fat mass (75%) and skeletal muscle mass 
(25%). Therefore, energy intake should be adjusted ac-
cording to the patient’s BMI and corrected for fluid overload 

(edema/ascites).
Nutritional intervention serves as the foundation for man-

aging myosteatosis, with tailored strategies based on the 
stage of the disease. For high-risk populations, the core goal 
of nutritional intervention is to maintain skeletal muscle met-
abolic homeostasis, thereby preventing the initiation of in-
tramuscular fat accumulation. Specifically, the general high-
risk population can adhere to a high-quality protein intake of 
1.2–1.5 g per kilogram of ideal body weight per day, which 
provides essential amino acids to support muscle protein 
synthesis and preserve muscle mass.110 Meanwhile, dietary 
patterns should prioritize balanced meals characterized by 
low saturated fat and high dietary fiber.

For patients with established myosteatosis, nutritional 
strategies should focus on halting disease progression and re-
storing muscle lipid balance. Implementing a “small, frequent 
meal” pattern, along with a late-evening protein-rich snack, 
has been shown to decrease lipid oxidation and improve ni-
trogen balance and skeletal muscle mass.111 Accumulating 
evidence suggests that supplementation with specific amino 
acid subsets, including essential basic amino acids (arginine, 
histidine, and lysine) and hydrophobic amino acids (leucine, 
isoleucine, phenylalanine, tryptophan, and tyrosine), may be 
beneficial in reversing myosteatosis, particularly among pa-
tients deficient in protein.104 Notably, recent clinical research 
has further indicated that polyunsaturated fatty acids exert a 
protective effect against myosteatosis.112,113

Exercise prescription
While exercise therapy has been proven to bring beneficial 
effects on myosteatosis in the elderly and obese,114 its spe-
cific mechanisms of action regarding intramuscular lipid re-
distribution require further in-depth investigation. Current 
evidence suggests that exercise therapy, when combined 
with proper nutrition management, may be beneficial in pre-
venting or slowing the progression of myosteatosis. Hoek 
et al. showed that exercise and dietary change can reverse 
evident NASH/fibrosis in obese Ldlr−/− mice. Leiden mice im-
proved myosteatosis and muscle function with additional ef-
fects following joint treatments.115 While these findings pro-
vide mechanistic insights, their direct applicability to clinical 
practice requires further validation through human studies. 
The effectiveness of exercise prescription has been analyzed 
in several recent reviews and meta-analyses that aim to 
deliver healthcare and counseling.116,117 As a result, these 
physical approaches can serve as recommendations to re-
lieve myosteatosis.

For high-risk populations, the primary goal of exercise in-
tervention is to establish foundational exercise habits that 
preserve skeletal muscle function and metabolic homeosta-
sis, thereby preventing the onset of myosteatosis. This stage 
focuses on initiating a combined regimen of aerobic and re-
sistance exercises, modalities that synergistically maintain 
muscle mass and enhance lipid oxidation. As individuals 
transition to a confirmed diagnosis of myosteatosis, exercise 
progression should follow a gradual, individualized escalation 
principle, one that aligns with both personal physical capacity 
and disease-specific characteristics.

Pharmacological therapy
Given the pathogenic contribution of hyperammonemia to 
myosteatosis, researchers have shown increasing interest 
in nutritional and pharmacological interventions that mod-
ify ammonia metabolism. Pichon et al. already found that 
long-term supplementation with L-ornithine L-aspartate can 
efficiently prevent myosteatosis in mice.118 AdipoRon is an 
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adiponectin receptor agonist that potently protects against 
myosteatosis due to aging or calorie excess in mice.103 These 
findings provide a proof-of-concept for both AdipoRon and L-
ornithine L-aspartate’s potential in preventing myosteatosis. 
However, further investigation, particularly through human 
clinical trials, is indispensable for establishing broader clinical 
applicability.

Considerations for future clinical trials
Currently, some pioneers have conducted several clinical trials 
on the treatment of myosteatosis in the field of oncology. For 
instance, Pring et al. conducted a double-blind, randomized 
controlled trial investigating whether neuromuscular electri-
cal stimulation can prevent myosteatosis, as determined by a 
CT scan.119 Another research group carried out a single-blind 
randomized controlled study evaluating the combined effect 
of vibration treatment and dietary supplements on myoste-
atosis among patients with concomitant sarcopenia. These 
clinical trials have provided clues, prompting subsequent in-
vestigations in the context of liver diseases.120 Additionally, 
we suggest that the measurement of myosteatosis should 
be CT-dictated and apply gender-specific cut-offs, since BMI-
specific cut-offs may be curtailed by fluid retention.

Conclusions
The true prevalence and clinical significance of this distinct 
skeletal muscle abnormality remain unclear due to inconsist-
ent assessment modalities and a lack of standardized defini-
tions alongside diagnostic criteria across published studies. 
In the case of MAFLD, the onset of myosteatosis appears 
to be associated with dysregulated metabolic conditions and 
histological alterations. Myosteatosis accounts for addition-
al negative impacts on morbidity and mortality in patients 
experiencing decompensated cirrhosis. In the context of 
LT, myosteatosis is linked to poor survival and adverse out-
comes. Myosteatosis may also serve as an independent risk 
factor for the recurrence of HCC.

The underlying mechanisms of myosteatosis are mul-
tifaceted and complicated in the context of liver diseases, 
including but not limited to mitochondrial dysfunction, IR, 
and permanent inflammatory responses. Additionally, the 
development of various body composition abnormalities may 
be partly explained by an interplay between the muscle-liver 
tissue axis. Currently, all available therapies for myosteato-
sis, including exercise prescription, pharmacotherapy, and 
nutritional intervention, primarily aim to replace deficiencies 
rather than targeting mechanistic pathways. In light of con-
current myosteatosis and liver diseases, the identification of 
potential therapeutic strategies is of utmost importance due 
to those unmet clinical needs.
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